Medidas do Canal MIMO *Indoor*: Análise da Capacidade e dos Parâmetros do Canal

TESE DE DOUTORADO

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

Programa de Pós-Graduação em Engenharia Elétrica

Rio de Janeiro, setembro de 2005

Robson Domingos Vieira

Medidas do Canal MIMO *Indoor*: Análise da Capacidade e dos Parâmetros do Canal

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio.

Orientador: Gláucio Lima Siqueira

Rio de Janeiro, setembro de 2005

Robson Domingos Vieira

Medidas do Canal MIMO *Indoor*: Análise da Capacidade e dos Parâmetros do Canal

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Dr. Gláucio Lima Siqueira Orientador Centro de Estudos de Telecomunicações - PUC-Rio

> > Dr. Erasmus Couto Brazil de Miranda UCP

Dr. Julio César Rodrigues Dal Bello UFF

Dr. Eduardo Javier Arancibia Vásquez CLARO RJ/ES

Dr. Rodolfo Sabóia Lima de Souza Centro de Estudos de Telecomunicações - PUC-Rio

Dr. Gervásio Protásio dos Santos Cavalcante UFPA

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 14 de setembro de 2005

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Robson Domingos Vieira

Graduou-se no ano de 1999 em Engenharia Elétrica pela Universidade Federal de Goiás (UFG). Obteve o título de mestre em Telecomunicações no ano de 2001 pela Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio).

Ficha Catalográfica

Vieira, Robson Domingos

Medidas do Canal MIMO *Indoor*. Análise da Capacidade e dos Parâmetros do Canal/ Robson Domingos Vieira; orientador: Gláucio Lima Siqueira. – Rio de Janeiro: PUC-Rio, Departamento de Engenharia Elétrica, 2005.

v., 238 f: il. ; 29,7 cm

1. Tese (doutorado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica.

Inclui referências bibliográficas.

1. Engenharia Elétrica-Tese. 2. Canal. 3. MIMO. 4. Capacidade. 5. Número efetivo de multipercurso. 6. Espalhamento de retardos. 7. Espalhamento angular. 8. Perfil de potência de retardos. 9. Perfil de potência azimutal. I. Siqueira, Gláucio Lima. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. III. Medidas do Canal MIMO *Indoor*: Análise da Capacidade e dos Parâmetros do Canal.

CDD: 621.3

À Tatiana, minha esposa, com amor. Aos meus pais e às minhas irmãs, com carinho.

Agradecimentos

Agradeço ao professor Gláucio pela orientação, paciência e dedicação ao longo dos seis anos de convivência. Com certeza a sua ajuda foi fundamental para o meu crescimento profissional e pessoal.

Agradeço ao professor João Célio, pela orientação e por ter demonstrado ser um grande amigo nas horas difíceis passadas ao longo do doutorado.

À Tati, minha esposa, que sempre esteve ao meu lado, me incentivando e apostando em minha capacidade.

A meus pais, pelo apoio e pela paciência, mesmo quando os caminhos se tornavam mais difíceis. As minhas irmãs, que sempre me ajudaram a ir em frente.

Aos amigos Denise, Chrystian, Fabrício José, Adriana, Luiz Henrique, Janaína, Glaucinho, Matriciano e José Carlos, que sempre torceram por mim.

Aos colegas do CETUC, João, Fabrício José, professora Leni, Eduardo Klein, Rodolfo Sabóia, Rodrigo Correa, Rodrigo de Lamare e Tiago, que sempre estavam presentes para me ajudar na solução dos problemas.

Ao pessoal do futebol da terça feira, principalmente ao professor Luis Fernando Soares, por permitirem a minha participação neste grupo de craques e na história deste famoso futebol.

A todos da secretaria da Engenharia Elétrica, especialmente à Alcina, e da secretaria do CETUC, em especial à Ana, por serem sempre prestativos.

Ao CNPq, pela bolsa concedida para o doutorado.

Resumo

Vieira, Robson Domingos. **Medidas do Canal MIMO** *Indoor*: Análise da **Capacidade e dos Parâmetros do Canal.** Rio de Janeiro, 2005. 238p. Tese de Doutorado - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Sistemas com múltiplas antenas transmissoras e receptoras, também conhecidos como sistemas MIMO (Multiple Input-Multiple Output), têm sido apontados como uma solução para aumentar a capacidade de enlaces sem fio, permitindo aos usuários utilizar aplicações com altas taxas de dados. Isto é extremamente importante em sistemas onde a capacidade obtida com as técnicas tradicionais é bastante limitada devido às características do ambiente de propagação. Com o sistema MIMO, algumas destas características são exploradas para criar canais paralelos e obter aumento expressivo de capacidade. A análise da capacidade de sistemas MIMO se baseia em uma modelagem desenvolvida a partir do comportamento estatístico dos pares de enlaces existentes entre as múltiplas antenas transmissoras e receptoras. Existe, portanto, um grande interesse em medir este comportamento para situações típicas bem como em relacioná-lo a determinados parâmetros do sistema. Nesta tese apresentam-se os resultados de uma campanha de medidas visando caracterizar canais MIMO de faixa estreita e faixa larga em ambientes fechados (indoor) com uma freqüência de portadora de 2GHz. A partir dos dados medidos, avalia-se a capacidade e diversos parâmetros do canal espaço-temporal. Os parâmetros do canal MIMO são estimados através do algoritmo FD-SAGE e as dispersões temporal e espacial do canal são calculadas a partir dos parâmetros estimados. Uma análise dos autovalores da matriz do canal MIMO é realizada com o objetivo de relacionar os valores da capacidade ao número de canais paralelos. É analisada, ainda, a correlação entre a capacidade e os parâmetros físicos do canal, tais como espaçamento entre os elementos do arranjo, espalhamento angular, espalhamento dos retardos, número e potência dos multipercursos.

Palavras-chave

canal, MIMO, capacidade, número efetivo de multipercurso, espalhamento de retardos, espalhamento angular, perfil de potência de retardos, perfil de potência azimutal.

Abstract

Vieira, Robson Domingos. **MIMO Measured Channels: Capacity Results and Analysis of Channel Parameters.** Rio de Janeiro, 2005. 238p. Tese de Doutorado - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Multiple antenna systems known as MIMO (Multiple Input Multiple Output) systems have been proposed as an effective way to address the user demand for high data rate applications in wireless systems. This is especially important in systems where the capacity attained with traditional techniques is very limited due to the adverse characteristics of the propagation environment. With MIMO, some of these characteristics are used to create parallel channels producing significant increase in capacity. The analysis of MIMO capacity is based on models developed from the statistical behavior of the multiple links between the transmitting and receiving antennas, and therefore there has been large interest in measuring these characteristics in typical scenarios and in relating the data to system parameters. In this thesis the results of a MIMO wideband measurement campaign carried out in an indoor scenario with a carrier frequency of 2 GHz is presented. The wideband and narrowband channel capacity and several channel parameters are evaluated from the measured data. The channel parameters are estimated using the frequency domain Space-Alternating Generalized Expectation maximization (FD-SAGE) algorithm. Temporal and spatial dispersions of the multipath channel are calculated from the estimated parameters and an eigenvalue analysis is performed seeking to relate the capacity values to the number of parallel channels. In addition, the correlation between channel capacity and physical parameters as antenna spacing, angle spread, delay spread, number and power of multipath components is investigated.

Keywords

channel, MIMO, capacity, effective multipath, delay spread, azimuth spread, delay power spectrum, azimuth power spectrum.

Sumário

1 Ir	Introdução21	
1.1	Motivação	23
1.2	Organização da Tese	. 24
2 T	eoria da Informação no Sistema MIMO	25
2.1	Modelo Matemático para o canal MIMO	25
2.2	Análise da capacidade	26
2.3	Capacidade com diversidade	. 28
2.4	Capacidade de N canais paralelos	. 29
2.5	Redução de um sistema MIMO a um sistema de canais	
	paralelos	. 32
2.6	Exemplos	36
2.7	Capacidade Ergódica e Capacidade Condicionada	39
2.8	Capacidade do sistema MIMO com um canal seletivo em	
	freqüência	. 42
2.9	Grau de Liberdade Efetivo (EDOF) e Número de Condição (CN)	44
3 N	<i>I</i> odelos de Canal para Sistemas MIMO	46
3.1	Caracterização da Matriz do Canal	46
3.1.1	1 Medidas da Matriz do Canal	46
3.1.2	2 Modelos paramétricos	52
3.1.3	3 Traçado de Raios	55
3.1.4	4 Modelo geométrico de espalhadores	56
3.1.5	5 Modelo de Cluster estatístico	56
4 C	Canal Espaço-Temporal	59
4.1	Variabilidade do Canal sem Fio	59
4.2	Caracterização do Canal Espaço-temporal	61
4.2.1	1 Caracterização Determinística através das Funções de Bello	62

4.2.2 Caracterização Estocástica com Funções de Correlação4.2.3 Condição WSSUS	. 63 . 64
4.2.3 Condição WSSUS	. 64
4.2.4 Funções de Bello para o Canal Seletivo no Espaço e	
Dispersão da Direção	. 66
5 Estimação de Parâmetros utilizando o algoritmo SAGE	. 74
5.1 Modelo do sinal	. 75
5.2 Função Log-Likelihood e estimação Maximum-Likelihood	. 77
5.2.1 Algoritmo EM (<i>Expectation-Maximization</i>)	. 78
5.2.2 Algoritmo SAGE (Space-Alternating Generalized EM)	. 79
5.3 Modelagem do modelo Implementado	. 81
5.4 Ciclo de Inicialização	. 85
5.5 Validação dos algoritmos	. 86
6 Sistema de Medidas	. 95
6.1 Calibração	100
6.2 Configuração do Analisador de Rede	101
6.3 Ambiente de Medidas	103
7 Resultados	115
7.1 Capacidade do Canal MIMO	115
7.2 Caracterização do Canal MIMO	174
8 Conclusões e Trabalhos Futuros	224
8.1 Conclusões	224
8.2 Trabalhos Futuros	227
9 Bibliografia	229
8.2 Trabalhos Futuros	227

Lista de Figuras

Figura 1 - Sistema MIMO	. 22
Figura 2 - Representação matemática do canal Pinhole ou Keyhole	
channel	. 38
Figura 3 - Fisicamente o canal Pinhole ou Keyhole	. 38
Figura 4 - Capacidades obtidas para uma razão sinal ruído e $N = M$	
variável	. 40
Figura 5 - Capacidade obtida para uma razão sinal-ruído e M	
Variáveis e <i>N</i> = 4	. 40
Figura 6 - Capacidades obtidas para uma razão sinal ruído,	
SNR = 20, fixo e $N = M$ variáveis	. 41
Figura 7 - Capacidades obtidas para uma razão sinal ruído,	
SNR = 20, fixo, <i>M</i> variável e $N = 4$. 41
Figura 8 - Capacidade de um canal seletivo em freqüência	. 43
Figura 9 - Distinção entre o canal de rádio, canal direcional e canal	
bi-direcional	. 53
Figura 10 - Parâmetros de transmissão e recepção para um cluster no	
modelo SVA	. 57
Figura 11 - Relação entre as funções de Bello	. 62
Figura 12 - Funções de correlações de Bello	. 63
Figura 13 - Funções de Bello para um canal WSSUS	. 65
Figura 14 - Fluxograma do algoritmo SAGE	. 81
Figura 15 - Perfis de Potência de Retardos para os casos do teste 2	. 88
Figura 16 - Estimação dos retardos e dos ângulos de chegada para o	
teste com 30 multipercursos	. 91
Figura 17 - Estimação dos retardos e dos ângulos de saída para o	
teste com 30 multipercursos	. 92
Figura 18 - Perfis de Potência de Retardos para os casos do teste 2	. 93
Figura 19 - Canal Rádio Móvel como DUT de um Analisador Vetorial	. 96
Figura 20 - Arranjo das antenas transmissoras e receptoras	. 97

Figura 21 - <i>Switch</i> utilizado
Figura 22 - Diagrama do sistema de medidas 99
Figura 23 - Configuração final do sistema de medidas 100
Figura 24 - Layout do CETUC 105
Figura 25 - Layout do Laboratório de Sistemas 106
Figura 26 - Layout do Laboratório de Óptica 107
Figura 27 - Layout do Corredor CETUC 108
Figura 28 - Layout do CETUC2 110
Figura 29 - Layout do Leme 112
Figura 30 - Layout da Biblioteca 113
Figura 31 - Layout da Indústria 114
Figura 32 - Agrupamentos dos pontos 116
Figura 33 - Cumulativas da capacidade do canal faixa estreita no
ambiente CETUC 118
Figura 34 - Capacidade condicionada 10% do ambiente CETUC 119
Figura 35 - SNR medida para o ambiente CETUC 119
Figura 36 - Capacidade condicionada para a SNR medida para o
ambiente CETUC 120
Figura 37 - Cumulativas da capacidade do canal faixa-estreita no
ambiente Laboratório de Sistemas 122
Figura 38 - Capacidade condicionada 10% no ambiente Laboratório
de Sistemas 122
Figura 39 - SNR medida para o ambiente Laboratório de Sistemas 123
Figura 40 - Capacidade condicionada para a SNR medida para o
ambiente Laboratório de Sistemas 123
Figura 41 - Cumulativas da capacidade do canal faixa estreita no
ambiente Laboratório de Óptica 125
Figura 42 - Capacidade condicionada 10% no ambiente Laboratório
de Óptica 125
Figura 43 - SNR medida no ambiente Laboratório de Óptica 126
Figura 44 - Capacidade condicionada para a SNR medida para o
ambiente Laboratório de Óptica 126
Figura 45 - Cumulativas da capacidade do canal faixa-estreita no
ambiente Corredor do CETUC 128

Figura 46 - Capacidade condicionada 10% no ambiente Corredor do
CETUC128
Figura 47 - SNR medida no ambiente Corredor do CETUC 129
Figura 48 - Capacidade condicionada para a SNR medida no ambiente
Corredor do CETUC 129
Figura 49 - Cumulativas da capacidade do canal faixa estreita para o
ambiente CETUC 2 131
Figura 50 - Capacidade condicionada 10% no ambiente CETUC 2 131
Figura 51 - SNR medida para o ambiente CETUC 2 132
Figura 52 - Capacidade condicionada para a SNR medida para o
ambiente CETUC 2 132
Figura 53 - Cumulativas da capacidade do canal faixa estreita para o
ambiente Leme134
Figura 54 - Capacidade condicionada 10% no ambiente Leme_1 134
Figura 55 - Capacidade condicionada 10% no ambiente Leme_2 135
Figura 56 - SNR medida para o ambiente Leme_1 135
Figura 57 - Capacidade condicionada para a SNR medida para o
ambiente Leme_1136
Figura 58 - SNR medida para o ambiente Leme_2 136
Figura 59 - Capacidade condicionada para a SNR medida para o
Leme_2 137
Figura 60 - Cumulativas da capacidade do canal faixa estreita para o
ambiente Biblioteca 138
Figura 61 - Capacidade condicionada 10% para o ambiente
Biblioteca138
Figura 62 - SNR medida para a Biblioteca 139
Figura 63 - Capacidade condicionada para a SNR medida para o
ambiente Biblioteca140
Figura 64 - Cumulativas da capacidade do canal faixa-estreita para o
ambiente Indústria141
Figura 65 - Capacidade condicionada 10% para o ambiente Indústria . 142
Figura 66 - SNR medida para o ambiente Indústria 142
Figura 67 - Capacidade condicionada para a SNR medida para o
ambiente Indústria143

Figura 68 - Capacidade faixa-larga para o ambiente CT1 146
Figura 69 - Capacidade faixa-larga para o ambiente CT5 146
Figura 70 - Capacidade faixa-larga para o ambiente LS1 147
Figura 71 - Capacidade faixa-larga para o ambiente LS2 147
Figura 72 - Capacidade faixa-larga para o ambiente LO1 148
Figura 73 - Capacidade faixa-larga para o ambiente LO2 148
Figura 74 - Capacidade faixa-larga para o ambiente CT2_2 149
Figura 75 - Capacidade faixa-larga para o ambiente CT2_5 149
Figura 76 - Capacidade faixa-larga para o ambiente LM2 150
Figura 77 - Capacidade faixa-larga para o ambiente LM5 150
Figura 78 - Capacidade faixa-larga para o ambiente BB1 151
Figura 79 - Capacidade faixa-larga para o ambiente BB3 151
Figura 81 - Capacidade faixa-larga para o ambiente ID2 152
Figura 81 - Capacidade faixa-larga para o ambiente ID3 152
Figura 82 - Função distribuição cumulativas dos autovalores para os
ambientes CT1 e CT5 155
Figura 83 - Capacidade por canal paralelo e capacidade total para os
ambientes CT2 e CT5 155
Figura 84 - Função distribuição cumulativas dos autovalores para os
ambientes LS1 e LS2 156
Figura 85 - Capacidade por canal paralelo e capacidade total para os
ambientes LS1 e LS2 156
Figura 86 - Função distribuição cumulativas dos autovalores para os
ambientes LO1 e LO2 157
Figura 87 - Capacidade por canal paralelo e capacidade total para os
ambientes LO1 e LO2 157
Figura 88 - Função distribuição cumulativas dos autovalores para os
ambientes CT2_2 e CT2_4 158
Figura 89 - Capacidade por canal paralelo e capacidade total para os
ambientes CT2_2 e CT2_4 158
Figura 90 - Função distribuição cumulativas dos autovalores para os
ambientes LM2 e LM5 159
Figura 91 - Capacidade por canal paralelo e capacidade total para os
ambientes LM2 e LM5 159

Figura 92 - Função distribuição cumulativas dos autovalores para os	
ambientes BB1 e BB2	160
Figura 93 - Capacidade por canal paralelo e capacidade total para os	
ambientes BB1 e BB2	160
Figura 94 - Função distribuição cumulativas dos autovalores para os	
ambientes ID2 e ID3	161
Figura 95 - Capacidade por canal paralelo e capacidade total para os	
ambientes ID2 e ID3	161
Figura 96 - Cumulativas da capacidade do canal faixa estreita 2x2	
para o ambiente CETUC para d = 0,5 e 1 comprimento	
de onda	163
Figura 97 - Cumulativas da capacidade do canal faixa estreita 2x2	
para o ambiente Laboratório de Sistemas para d = 0,5	
e 1 comprimento de onda	164
Figura 98 - Cumulativas da capacidade do canal faixa estreita 2x2	
para o ambiente Laboratório de Óptica para d = 0,5 e 1	
comprimento de onda	164
Figura 99 - Cumulativas da capacidade do canal faixa estreita 2x2	
para o ambiente CETUC 2 para d = 0,5 e 1 comprimento	
de onda	165
Figura 100 - Cumulativas da capacidade do canal faixa estreita 2x2	
para o ambiente Leme para d = 0,5 e 1 comprimento	
de onda	165
Figura 101 - Cumulativas da capacidade do canal faixa estreita 2x2	
para o ambiente Biblioteca para d = 0,5 e 1 comprimento	
de onda	166
Figura 102 - Cumulativas da capacidade do canal faixa estreita 2x2	
para o ambiente Industria para d = 0,5 e 1 comprimento	
de onda	166
Figura 103 - Capacidade faixa-larga para o ambiente CT5-d=0,5	
e d=1	168
Figura 104 - Capacidade faixa-larga para o ambiente LS1-d=0,5	
e d=1	168

Figura 105 - Capacidade faixa-larga para o ambiente LO2-d=0,5
e d=1 169
Figura 106 - Capacidade faixa-larga para o ambiente Ct2_2-d=0,5
e d=1 169
Figura 107 - Capacidade faixa-larga para o ambiente LM2-d=0,5
e d=1 170
Figura 108 - Capacidade faixa-larga para o ambiente BB2-d=0,5
e d=1 170
Figura 109 - Capacidade faixa-larga para o ambiente ID2-d=0,5 e d=1 171
Figura 110 - Pontos escolhidos para representarem os resultados 175
Figura 111 - Perfil de potência de retardos para o ambiente CT1 177
Figura 112 - Perfil de potência de retardos para o ambiente CT5 177
Figura 113 - Perfil de potência de retardos para o ambiente LS1 178
Figura 114 - Perfil de potência de retardos para o ambiente LS2 178
Figura 115 - Perfil de potência de retardos para o ambiente LO1 179
Figura 116 - Perfil de potência de retardos para o ambiente LO2 179
Figura 117 - Perfil de potência de retardos para o ambiente CT2_2 180
Figura 118 - Perfil de potência de retardos para o ambiente CT2_5 180
Figura 119 - Perfil de potência de retardos para o ambiente LM2 181
Figura 120 - Perfil de potência de retardos para o ambiente LM5 181
Figura 121 - Perfil de potência de retardos para o ambiente BB1 182
Figura 122 - Perfil de potência de retardos para o ambiente BB3 182
Figura 123 - Perfil de potência de retardos para o ambiente ID2 183
Figura 124 - Perfil de potência de retardos para o ambiente ID3 183
Figura 125 - Número de multipercursos nos ambientes medidos 184
Figura 126 - Número efetivo de multipercursos no CT1 188
Figura 127 - Número efetivo de multipercursos no CT5 188
Figura 128 - Número efetivo de multipercursos no LS1 189
Figura 129 - Número efetivo de multipercursos no LS2 189
Figura 130 - Número efetivo de multipercursos no LO1 190
Figura 131 - Número efetivo de multipercursos no LO2 190
Figura 132 - Número efetivo de multipercursos no CT2_2 191
Figura 133 - Número efetivo de multipercursos no CT2_5 191
Figura 134 - Número efetivo de multipercursos no LM2 192

Figura 135 -	Número efetivo de multipercursos no LM5 192
Figura 136 -	Número efetivo de multipercursos no BB1 193
Figura 137 -	Número efetivo de multipercursos no BB3 193
Figura 138 -	Número efetivo de multipercursos no ID2 194
Figura 139 -	Número efetivo de multipercursos no ID3 194
Figura 140 -	CDF do espalhamento de retardos de alguns ambientes
	medidos 196
Figura 141 -	CDF da banda de coerência 0,7 de alguns ambientes
	medidos
Figura 142 -	Escala de cores
Figura 143 -	CT1: Componentes de multipercursos apresentadas
	em todas as possíveis relações em duas dimensões.
	A largura das bolas é proporcional à potência de cada
	multipercurso
Figura 144 -	CT5: Componentes de multipercursos apresentadas
	em todas as possíveis relações em duas dimensões.
	A largura das bolas é proporcional à potência de cada
	multipercurso
Figura 145 -	LS1: Componentes de multipercursos apresentadas
	em todas as possíveis relações em duas dimensões.
	A largura das bolas é proporcional a potência de cada
	multipercurso
Figura 146 -	LS2: Componentes de multipercursos apresentadas
	em todas as possíveis relações em duas dimensões.
	A largura das bolas é proporcional a potência de cada
	multipercurso
Figura 147 -	LO1: Componentes de multipercursos apresentadas
	em todas as possíveis relações em duas dimensões.
	A largura das bolas é proporcional a potência de cada
	multipercurso
Figura 148 -	LO2: Componentes de multipercursos apresentadas
	em todas as possíveis relações em duas dimensões.
	A largura das bolas é proporcional à potência de cada
	Multipercurso

Figura 149 -	CT2_2: Componentes de multipercursos apresentadas
	em todas as possíveis relações em duas dimensões.
	A largura das bolas é proporcional à potência de cada
	multipercurso
Figura 150 -	- CT2_5: Componentes de multipercursos apresentadas
	em todas as possíveis relações em duas dimensões.
	A largura das bolas é proporcional à potência de cada
	multipercurso
Figura 151 -	- LM2: Componentes de multipercursos apresentadas
	em todas as possíveis relações em duas dimensões.
	A largura das bolas é proporcional à potência de cada
	multipercurso
Figura 152 ·	- LM5: Componentes de multipercursos apresentadas
	em todas as possíveis relações em duas dimensões.
	A largura das bolas é proporcional à potência de cada
	multipercurso
Figura 153 -	BB1: Componentes de multipercursos apresentadas
	em todas as possíveis relações em duas dimensões.
	A largura das bolas é proporcional à potência de cada
	multipercurso
Figura 154 -	BB3: Componentes de multipercursos apresentadas
	em todas as possíveis relações em duas dimensões.
	A largura das bolas é proporcional à potência de cada
	multipercurso
Figura 155 -	· ID2: Componentes de multipercursos apresentadas
	em todas as possíveis relações em duas dimensões.
	A largura das bolas é proporcional à potência de cada
	multipercurso
Figura 156 -	· ID3: Componentes de multipercursos apresentadas
	em todas as possíveis relações em duas dimensões.
	A largura das bolas é proporcional à potência de cada
	multipercurso 212
Figura 157 -	PPRA-DOA para o ponto 33 do ambiente LO2 212
Figura 158 -	PPRA-DOD para o ponto 33 do ambiente LO2 213

Figura 159 -	PPDOA-DOD para o ponto 33 do ambiente LO2	213
Figura 160 -	Espalhamento angular no RX	215
Figura 161 -	Espalhamento angular no TX	215
Figura 162 -	Espalhamento angular no receptor e no transmissor no	
	ambiente LM1	217

Lista de Tabelas

Tabela 1 - Teste 1 - Valores reais dos ângulos de chegada e saída e
da amplitude complexa 86
Tabela 2 - Teste 1 - Valores estimados dos parâmetros para diferentes
resoluções – SAGE-PIC
Tabela 3 - Teste 2 - Valores reais dos tempos de chegada, ângulo de
saída e da amplitude complexa88
Tabela 4 - Teste 2 - Valores estimados dos parâmetros para diferentes
resoluções - PIC89
Tabela 5 - Teste 3 - Valores reais dos tempos de chegada, ângulo de
saída e da amplitude complexa
Tabela 6 - Teste 3 - Valores estimados dos parâmetros para diferentes
resoluções – SAGE-PIC
Tabela 7 - Analisador vetorial HP1614ET 97
Tabela 8 - Especificações do Switch
Tabela 9 - Especificações do LNA e do amplificador
Tabela 10 - Configuração básica do analisador de rede 102
Tabela 11 - Relação entre a capacidade condicionada medida e a
ideal para o CETUC 117
Tabela 12 - Relação entre a capacidade condicionada medida e a
ideal para o ambiente Laboratório de Sistemas
Tabela 13 - Relação entre capacidade condicionada medida e a
ideal para o ambiente Laboratório de Óptica
Tabela 14 - Relação entre a capacidade condicionada medida e a
ideal para o Corredor do CETUC 127
Tabela 15 - Relação entre a capacidade condicionada medida e a
ideal para o ambiente CETUC 2 130
Tabela 16 - Relação entre a capacidade condicionada medida e a
ideal para o ambiente Leme 133

Tabela 17 -	Relação entre a capacidade condicionada medida e a
	ideal para o ambiente Biblioteca 137
Tabela 18 -	Relação entre a capacidade condicionada medida e a
	ideal para o ambiente Indústria 140
Tabela 19 -	Número de bandas independentes para cada largura de
	banda escolhida 144
Tabela 20 -	Capacidade condicionada para diferentes larguras de
	bandas145
Tabela 21 -	Capacidade condicionada para diferentes larguras de
	bandas153
Tabela 22 -	Relação entre o primeiro canal paralelo e os outros canais
	paralelos
Tabela 23 -	Diferenças entre as capacidades condicionadas para
	relação entre o primeiro canal paralelo e os outros canais
	paralelos
Tabela 24 -	Capacidade condicionada faixa-estreita, faixa-larga e
	capacidade média para todos os ambientes medidos 173
Tabela 25 -	Capacidade condicionada faixa-estreita, capacidade
	média, número de multipercursos médio e número de
	multipercurso efetivo médio 187
Tabela 26 -	Retardo médio e o espalhamento de retardo para todos
	os ambientes medidos 197
Tabela 27 -	Banda de coerência para os dados medidos 198
Tabela 28 -	Capacidade de um canal seletivo em freqüência e a
	banda de coerência 199
Tabela 29 -	Ângulo de chegada médio, ângulo de saída médio,
	espalhamento angular médio no transmissor,
	espalhamento angular médio no receptor e maior pico 218
Tabela 30 -	Capacidade condicionada 10%, capacidade média,
	espalhamento de retardo no transmissor, espalhamento
	• • •
	de retardo no receptor e número efetivo de multipercurso